长甚至等效温度都行。
又比如
波失。
20v散射的中子波失大概在220的1次方左右,这个参数可是当年陆光达在海对面读博时亲手统计出来的。
更别说在如今596项目中由于各种计算需要,也涉及到了大量相关波失参数。
不夸张的说。
陆光达什么都可能忘,但绝不可能忘记这个数值。
可眼下按照常规推理得出的中子波失数值,却和他已知的相差了整整八倍,这显然就很挑战三观了。
就像是问你一只成年猫连尾巴在内有多长,可能有人会说一米,可能有人会说40厘米,但试问有谁会说自家猫有五米长的?
因此很明显。
一定是哪个地方出了某些问题。
想到这里。
陆光达便再次看向了徐云,将算纸转向他,对他问道:
“小韩,这到底是怎么回事?”
徐云见状也没卖关子,而是微微叹了口气,解释道:
“陆主任,不瞒你说,这是当年剑桥大学一位叫做一方通行的学长在实验中发现的异常。
“他是一个失量计算的狂热者,于是少见的想用波失来描述中子,但在计算之后,却发生了这么个诡异的情况。”
“于是他在数学上进行了反复比对,最终发现了一个情况,那就是”
“这是中子的磁矩在作怪,它的反常磁矩导致了它在模型上的误差。”
陆光达愣了两秒钟,但很快音调便拔高了一大截:
“磁矩?”
徐云沉沉的点了点头。
某种意义上来说。
粒子磁矩在计算上引发的误差,坑了物理学界整整一代人。
磁矩。
提起这个词,很多人可能下意识都会想到磁铁的磁矩。
但实际上。
除了宏观磁矩外,在看不见的微观粒子中,还存在有另一种微观磁矩的概念。
它是粒子的一种内禀属性,和自旋有关系。
当初曾经解释过自旋的意义,也就是核子处于复杂的共同运动状态下对于其中心轴的自转。
旋转的微粒在其周围引发了沿其自转轴方向排列的动量矩——例如陀螺在旋转时使之保持直立状态的就是它的动量矩,旋转的电荷同样会围绕自身产生被称为磁矩的磁场。
而在所有粒子中。
中子这种不带电粒子同样具有磁矩,这是三十年代那会儿斯特恩发现的异常现象。
在眼下这个时期。
物理界计算出来的中子磁矩大概是382个单位核磁子,但物理学界对于它的认知也就仅此而已了。
磁矩这玩意儿怎么出现、对于中子有什么意义,目前依旧无人知晓。
而按照徐云的说法
正是因为这个磁矩的存在,导致数学上的计算出了问题?
随后徐云顿了顿,继续解释道:
“陆主任,当初斯特恩计算中子磁矩的模型您应该记得吧?”
陆光达点点头,提笔在纸上写下了一个表达式:
徐云伸手点了点其中的p,说道:
“您看这里,这里的p是自由中子的同位旋质量,也就是同位旋二重态的两个正交基失,它们两个一起构成了一个同位旋为1\/2的子空间。”
“从量子力学的角度来说,对称性会导致能级的简并——以氢原子为例,在不考虑微扰论时,当n和l相同时,无论值和sz值为多少,能量都是一样的。”
“这就是典型的对称性导致的能级简并,这些简并的能级张成了一个不变子空间”
“所以中子在靶材内部也就是未激发态的情况下,外层负电荷的自旋磁矩半径需要扣除一个电势垒。”
“也